Γ

WBCS (Main) Exam Paper – VI Practice Set

Answers with Explanation

1. (b) Here, first divisor (729) is a multiple of second divisor (27). \therefore Required remainder = Remainder got on ধ্যাচিডাৰ্ম্প dividing 56 by 27 = 2. (b) Let the value of estate be $\mathbf{E} \mathbf{X}$ According to the 2. $\therefore \text{ LCM} = 2 \times 2 \times 3 \times 2 \times 3 = 72$ question \therefore Required number = 72, because it is exactly divisible by 4, 6, 8 and 9 and it leaves $\frac{4}{5}$ of x = 16800 remainder 7 when divided by 13. $\therefore x = \frac{16800 \times 5}{4} = ₹ 21000$ 6. (d) $1\frac{1}{2}$ hours = 90 minutes ন্দাগুৰাটে 1 hour and 45 minutes = 105 minutes $\therefore \frac{3}{7}$ of the value = $21000 \times \frac{3}{7}$ 1 hour = 60 minutes : LCM of 30 minutes, 60 minutes, 90 minutes = 3000 × 3 = ₹9000 and 105 minutes (c) The original property with $Ram = \mathcal{F}x$ (let) 3. 3 30, 60, 90, 105 \therefore Wife's share = $\mathbf{\xi} \frac{\mathbf{x}}{2}$ $\begin{array}{c}
5 & 10, 20, 30, 35 \\
\hline
2 & 2, 4, 6, 7 \\
\hline
1, 2, 3, 7
\end{array}$ Remaining property $= x - \frac{x}{3} = \overline{\xi} \frac{2x}{3}$ $\therefore \text{ LCM} = 3 \times 5 \times 2 \times 2 \times 3 \times 7 \quad \text{Symptotic for a state of the set of t$ Daughter's share $=\frac{2x}{3} \times \frac{3}{5} = \underbrace{\underbrace{3}}_{5} \underbrace{2x}_{5}$ = 1260 minutes 1260 minutes $=\frac{1260}{60}=21$ hours Son's share $=\frac{2x}{3} - \frac{2x}{5} = \frac{10x - 6x}{15} = \underbrace{\underbrace{3}}_{15} \underbrace{4x}_{15}$... The bell will again ring simultaneously after 21 hours. $\therefore \frac{4x}{15} = 6400$ \therefore Time will be $= 12 \operatorname{noon} + 21 \operatorname{hours} = 9 \operatorname{a.m.}$ $\Rightarrow 4x = 6400 \times 15$ 7. (a) Expression দন গুৰায়ে $=4-\frac{5}{1+\frac{1}{3+\frac{1}{8+1}}}$ \Rightarrow x = $\frac{6400 \times 15}{4}$ = ₹24000 4. (b) Let LCM be L and HCF be H, then L = 4H \therefore H + 4H = 125 $=4-\frac{5}{1+\frac{1}{3+\frac{4}{2}}}=4-\frac{5}{1+\frac{1}{\frac{27+4}{2}}}$ \Rightarrow 5H = 125 \Rightarrow H = $\frac{125}{5}$ = 25 $\therefore L = 4 \times 25 = 100$ $=4-\frac{5}{1+\frac{9}{31}}=4-\frac{5}{\frac{31+9}{31}}$: Second number $L \times H$ First number $=4-\frac{5\times31}{40}=\frac{160-155}{40}$ দিন গুৰায়ে $=\frac{100 \times 25}{100}=25$ দ্যান্দর্গায়িন্ট $=\frac{5}{40}=\frac{1}{8}$ (b) LCM of 4, 6, 8, 9 5.

 $\frac{7}{18}$ 13. (a) $\frac{W_1}{W_2} = \frac{2}{3}$

14. (d) Accord

8. (a) $? = \left(\frac{1}{2} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}\right) \div \left(\frac{2}{5} - \frac{5}{9} + \frac{3}{5} - \frac{7}{18}\right)$ $= \left(\frac{30 - 15 + 12 - 10}{60}\right) \div \left(\frac{36 - 50 + 54 - 35}{90}\right)$ $= \left(\frac{17}{60}\right) \div \left(\frac{5}{90}\right) = \frac{17}{60} \times 18 = \frac{51}{10} = 5\frac{1}{10}$

9. (a) Using (x) of Basic Formula Let 0.9 = x, 0.2 = y and 0.3 = z Then, the given expression

 $= \frac{x \times x \times x + y \times y \times y + z \times z \times z - 3 \times x \times y \times z}{x \times x + y \times y + z \times z - x \times y - y \times z - z \times x}$ $= \frac{x^3 + y^3 + z^3 - 3xyz}{x^2 + y^2 + z^2 - xy - yz - zx}$ $= \frac{(x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)}{x^2 + y^2 + z^2 - xy - yz - zx}$ = x + y + z = 0.9 + 0.2 + 0.3 = 1.410. (d) Number of boys in the class = x (let)

- $\therefore \text{ Number of girls} = 50 x$ According to the question, $x \times 70 + (50 - x) \times 75 = 50 \times 72$ $\Rightarrow 70x + 3750 - 75x = 3600$ $\Rightarrow 3750 - 5x = 3600$ $\Rightarrow 5x = 3750 - 3600 = 150$ $\Rightarrow x = \frac{150}{5} = 30$
- 11. (b) Sum of new numbers = na + (2 + 4 + 8 + 16 to n terms) Now, S = 2 + 4 + 8 + 16 + to n terms Here, a = first term = 2 r = common ratio = $\frac{4}{2} = 2$ It is a geometric series.

$$\therefore S = \frac{a(r^{n} - 1)}{r - 1} = \frac{2(2^{n} - 1)}{2 - 1}$$
$$= 2 (2^{n} - 1)$$
$$\therefore \text{ Required average}$$
$$= \frac{na + 2(2^{n} - 1)}{n}$$
$$= a + \frac{2(2^{n} - 1)}{n}$$

12. (c) Average of first five odd multiples of 3

n

$$=\frac{3(1+3+5+7+9)}{5}=\frac{3\times25}{5}=15$$

$$= \frac{3}{2} \text{ and } \frac{W_1}{W_3} = \frac{1}{2}$$

$$= \frac{W_1}{W_3} = \frac{W_2}{W_3} = \frac{3}{2} \times \frac{1}{2} = \frac{3}{4} = 3:4$$
ing to the question,
$$= B \times \frac{75}{W_3} = C \times \frac{6}{100}$$

$$A \times \frac{2}{3} = B \times \frac{75}{100} = C \times \frac{6}{10}$$
$$\Rightarrow A \times \frac{2}{3} = B \times \frac{3}{4} = C \times \frac{3}{5}$$
Now, $A \times \frac{2}{3} = B \times \frac{3}{4}$
$$\Rightarrow \frac{A}{B} = \frac{3}{4} \times \frac{3}{2} = \frac{9}{8} \Rightarrow A : B = 9 : 8$$
and $B \times \frac{3}{4} = C \times \frac{3}{5}$
$$\Rightarrow \frac{B}{C} = \frac{3}{5} \times \frac{4}{3} = \frac{4}{5} = \frac{8}{10}$$
$$= B : C = 8 : 10$$

 $-9 \cdot 8 \cdot 10$

Then, 5 years ago,

$$\frac{x-5}{2x-5} = \frac{1}{3}$$

$$\Rightarrow 3x - 15 = 2x - 5$$

$$\Rightarrow x = 15 - 5 = 10$$

$$\therefore \text{ Age of elder brother} = 10 \times 2 = 20$$

$$\therefore \text{ Required ratio}$$

$$= \frac{10+5}{20+5} = \frac{15}{25} = 3:5$$
(c) $1\% = \frac{1}{100}$

$$\therefore \frac{1}{100} \times \frac{1}{2} = \frac{1}{200} = 0.005$$

17. (d) Required number

16.

$$= \frac{240 \times 25}{100} - \frac{160 \times 15}{100}$$

= 60 - 24 = 36
18. (d) Let income be ₹100
∴ Sum given to elder son
= 20% of ₹100 - ₹20

Remaining Sum = ₹80 Sum given to younger son = 30% of ₹80 = ₹24 Remaining sum = $\mathbf{E}(80 - 24) = \mathbf{E}\mathbf{56}$ Sum given to the trust দ্যাচিড কি = 10% of ₹56 = ₹5.6 ∴ Remaining sum = ₹(56 - 5.6) = ₹50.4∴ When ₹50.4 remains, total income = ₹100 ∴ When ₹10080 remains, total income = $\frac{100 \times 10080}{50.4}$ = ₹20000 19. (b) C.P of article $=\frac{100}{100-20}\times450$ = $\frac{100 \times 450}{80}$ =₹ 562.5 ∴ To gain 20% S.P. = $\frac{562.5 \times 120}{100}$ = ₹675 দি গোদে 20. (c) Gain per cent = $\frac{400 - 320}{320} \times 100$ $=\frac{80}{320}\times 100 = 25\%$ 21. (c) S.P. of 7 pens = $\frac{10 \times 140}{100}$ = ₹14 \therefore S.P. of 1 pen $=\frac{14}{7} = ₹2$ Clearly, 5 pens were sold for ₹1022. (c) Single equivalent discount $= \left(15 + 10 - \frac{15 \times 10}{100}\right) = 23.5\%$ ∴ Cost price $=\frac{800 \times 76.5}{100} = ₹ 612$ Actual C.P. = ₹(612 + 28) = ₹640 \therefore Gain % = $\frac{800 - 640}{640} \times 100$ $=\frac{160\times100}{640}=25\%$ গ্যাচিড মি 23. (c) C.P. for A = $3000 \times \frac{90}{100} \times \frac{85}{100} = ₹ 2295$ Actual C.P. = 2295 + 105 = ₹2400 :. Gain per cent = $\frac{800}{2400} \times 100 = \frac{100}{3} = 33\frac{1}{3}\%$

24. (a) Price of article = Rs. x (let) According to the question,

$$P = \frac{x(100-20)}{100} \times \frac{100-25}{100}$$

$$\Rightarrow P = x \times \frac{80}{100} \times \frac{75}{100}$$

$$\Rightarrow P = x \times \frac{4}{5} \times \frac{3}{4} = \frac{3x}{5}$$

$$\Rightarrow x = ₹ \frac{5}{3}P$$
25. (a) Equal instalment

$$= \frac{6450 \times 200}{4[200 + (4-1) \times 5]}$$

$$= \frac{6450 \times 200}{4(215)}$$

$$= \frac{6450 \times 200}{4(215)}$$

$$= \frac{6450 \times 200}{215} = ₹1500$$
26. (c) Annual interest = $365 \times 2 = ₹730$
Principal = $\frac{SI \times 100}{Time \times Rate}$

$$= \frac{730 \times 100}{1 \times 5} = ₹14600$$
27. (c) Case I,
Interest = Principal
Rate = $\frac{Interest \times 100}{Principal \times Time}$

$$= \frac{100}{7}\% \text{ per annum}$$
Case II,
Interest = $3 \times Principal$
Time = $\frac{100}{7} = 3 \times 7 = 21 \text{ years}$
28. (c) $A = P\left(1 + \frac{R}{100}\right)^{T}$

$$\Rightarrow 30000 + 4347$$

L

গ্ৰাডিগ

٦

$$= 30000 \left(1 + \frac{7}{100}\right)^{T}$$

$$\Rightarrow \frac{34347}{30000} = \left(\frac{107}{100}\right)^{2} = \left(\frac{107}{100}\right)^{T}$$

$$\Rightarrow \frac{11449}{10000} = \left(\frac{107}{100}\right)^{2} = \left(\frac{107}{100}\right)^{T}$$

$$\Rightarrow Time = 2 \text{ years}$$
29. (d) Rate = 10% Per annum = 5% per half year Time = T years = 2T half years
$$\therefore A = P \left(1 + \frac{R}{100}\right)^{T}$$

$$\Rightarrow 926.10 = 800 \left(1 + \frac{5}{100}\right)^{2T}$$

$$\Rightarrow 926.10 = 800 \left(1 + \frac{5}{100}\right)^{2T}$$

$$\Rightarrow 926.10 = 800 \left(1 + \frac{5}{100}\right)^{2T}$$

$$\Rightarrow 2T = 3 \Rightarrow T = \frac{3}{2} \text{ years}$$
30. (d) Let S.I. = ₹100, & Principal = ₹100

$$\therefore \text{ Rate } = \frac{\text{S.L} \times 100}{\text{Principal} \times \text{Time}}$$

$$= \frac{100 \times 100}{100 \times 8} = \frac{25}{2} \%$$

$$\therefore \text{ C.I. } = P \left[\left(1 + \frac{r}{100}\right)^{T} - 1 \right]$$

$$= 8000 \left[\left(1 + \frac{25}{200}\right)^{2} - 1 \right]$$

$$= 8000 \left[\left(1 + \frac{25}{200}\right)^{2} - 1 \right]$$

$$= 8000 \left[\left(\frac{81}{64} - 1\right) = \frac{8000 \times 17}{64} = ₹2125$$
31. (b) (x and y)'s 1 hour work
$$= \frac{1}{4} + \frac{1}{8} = \frac{2 + 1}{8} = \frac{3}{8}$$

$$\therefore \text{ Required time } = \frac{8}{3} \text{ hours}$$

$$= \left(\frac{8}{3} \times 60\right) \text{ minutes} = 160 \text{ minutes.}$$

Γ

L

8

32. (b) Work done by
$$(A + B)$$
 in 5 days

$$= 5\left(\frac{1}{12} + \frac{1}{20}\right) = 5\left(\frac{5+3}{60}\right) = \frac{40}{60} = \frac{2}{3}$$
Remaining work $= 1 - \frac{2}{3} = \frac{1}{3}$
 \therefore Time taken by C in doing $\frac{1}{3}$ work
 $= 3$ days
 \therefore Required time $= 3 \times 3 = 9$ days
33. (c) Work done by $(A + B)$ in 1 day
 $= \frac{1}{15} + \frac{1}{10} = \frac{2+3}{30} = \frac{5}{30} = \frac{1}{6}$
 \therefore $(A + B)$'s 2 days' work $= \frac{2}{6} = \frac{1}{3}$
Remaining work $= 1 - \frac{1}{3} = \frac{2}{3}$
This part is done by A alone.
 \therefore one work is done by A in 15 days.
 $\therefore 2 \frac{2}{3}$ work is done in $15 \times \frac{2}{3} = 10$ days.
 \therefore Total number of days $= 10 + 2 = 12$ days
34. (d) Part of cistern filled by three pipes in an hour
 $= \frac{1}{3} + \frac{1}{5} - \frac{1}{2} = \frac{10 + 6 - 15}{30} = \frac{1}{30}$
Hence, the cistern will be filled in 30 hours.
35. (c) Part of the tank filled in first two minutes
 $= \frac{1}{20} - \frac{1}{30} = \frac{3 - 2}{60} = \frac{1}{60}$
 \therefore Part of tank filled in 114 minutes
 $= \frac{57}{60} = \frac{19}{20}$
 \therefore Remaining part of cistern will be filled in
115th minute
36. (b) Part of the tank filled by these in 2 hours
 $= \frac{2}{6} = \frac{1}{3}$

Remaining part =
$$1 - \frac{1}{3} = \frac{2}{3}$$

দ্যা গুৰান্থি

Γ

Time taken by A and B in filling $\frac{2}{3}$ rd part = 8 hours \therefore Time taken by A and B in filling the whole tank = $\frac{8 \times 3}{2}$ = 12 hours \therefore Part of tank filled by C in an hour $=\frac{1}{6}-\frac{1}{12}=\frac{1}{12}$ দিন গুবায়ি Hence, required time = 12 hours 37. (a) Time = $10\frac{1}{2}$ hours = $\frac{21}{2}$ hours Speed = 40 kmphDistance = Speed \times Time $=40 \times \frac{21}{2} = 420$ km 38. (d) : 1 m/sec = $\frac{18}{5}$ kmph দিন গুবায়ি $\therefore \frac{10}{2}$ m / sec $=\frac{18}{5}\times\frac{10}{3}=12$ kmph 39. (b) When a train crosses a railway platform, it travels a distance equal to sum of length of platform and its own length. Speed = 132 kmph $=132 \times \frac{5}{18} = \frac{110}{3}$ m/sec. \therefore Required time $=\frac{110+165}{110}$ seconds $=\frac{275\times3}{110}=7.5$ seconds 40. (a) Speed in still water = x km/hSpeed of current = y km/h $\therefore \mathbf{x} + \mathbf{y} = \frac{1}{\underline{4}} = 15$ দ্যাগ্ৰ গাৰ্ম $x-y=\frac{1}{10}=6$

$$\therefore \text{ Speed of current} \\ = \frac{1}{2} [(x + y) - (x - y)] \\ = \frac{1}{2} (15 - 6) = \frac{9}{2} = 4.5 \text{ km / h} \\ \text{(d) Speed of boat in still water = x kmph (let)} \\ \text{Speed of current = y kmph} \\ \text{Rate downstream = (x + y) kmph} \\ \text{Rate upstream = (x - y) kmph} \\ \text{Distance = Speed $\times \text{Time}} \\ \end{array}$$$

41.

bh Distance = Speed \times Time $\therefore (x - y) \times 2t = (x + y) \times t$ $\Rightarrow 2x - 2y = x + y$ $\Rightarrow 2x - x = 2y + y \Rightarrow x = 3y$ $\Rightarrow \frac{x}{v} = \frac{3}{1} = 3:1$ 42. (d) Let $PQ = QR = z \ km$.

Let speed of boat in still water be x kmph. and speed of current be y kmph. দি গুৰাদেণ According to the question,

$$\frac{z}{x+y} + \frac{z}{x-y} = 12$$
 (i)
and $\frac{2z}{x-y} = 16\frac{40}{60}$

$$\Rightarrow \frac{2z}{x-y} = 16\frac{2}{3} = \frac{50}{3}$$
(ii)

By equation (i)
$$\times 2$$
 – (ii),

$$\frac{2z}{x+y} + \frac{2z}{x-y} - \frac{2z}{x-y} = 24 - \frac{50}{3}$$
$$\Rightarrow \frac{2z}{x+y} = \frac{72 - 50}{3}$$

$$=\frac{22}{3}=7\frac{1}{3}$$
 hours

 $3^2 + 4^2 = 5^2$ ΔABC is a right angled triangle. \therefore area ABC = $\frac{1}{2} \times AB \times BC$

Ć

দি গুৰাদে

দ্যান্থি প্ৰায়ি

গ্ৰ্মাডিও মি

٦

L

$$\frac{r}{r_{2}} = \frac{2}{3} \text{ and } \frac{h_{1}}{h_{2}} = \frac{5}{3}$$

$$\therefore \text{ Ratio of their volume}$$

$$= \pi r_{1}^{2}h_{1} : \pi r_{2}^{2}h_{2}$$

$$= (2)^{2} \times 5 : (3)^{2} \times 3$$

$$= 4 \times 5 : 9 \times 3 = 20 : 27$$
50. (b) Let 0.41 = x and 0.69 = y
$$\therefore \text{ Expression } = \frac{(x^{3} + y^{3})}{(x^{2} - xy + y^{2})}$$

$$= \frac{(x + y)(x^{2} - xy + y^{2})}{(x^{2} - xy + y^{2})}$$

$$= x + y = 0.41 + 0.69 = 1.10$$
51. (a) The water in river flows. The water in pool remains stagnant.
52. (c) January is the first month of a year and November is the second last month of a year. Similarly, Sunday is the first day of a week and Friday is the second last ady of a week and Friday is the second last ady of a week.
53. (a) The pair of synonyms is given.
54. (b) Yesterday \rightarrow Today \rightarrow Tommorrow March \rightarrow April \rightarrow May
55. (b) $\sqrt{169} = 13$
Therefore, $\sqrt{289} = 17$
56. (a) $(5)^{3} - 1 = 124$
Similarly, $(7)^{3} - 1 = 342$
57. (a) $371 - 150 = 221$
 $468 - 221 = 247$
58. (c) A^{+}
 $\int B^{+} C$
C's father is A but C is not son of A. Hence, C is daughter of A.
59. (d) K
Daughter
 $\frac{P}{H}$
 M^{-}
 $M^$

Obviously P and M are parents (father and mother respectively) of T. Hence P and M are husband-wife. Hence P is son-in-law of M's mother/father 'K'.

60. (c) Grandson of Arun's mother means either son or nephew of Arun. Therefore, Arun is the father-in-law of that girl.

61. (a)
$$\overrightarrow{x \rightarrow +} \div \overrightarrow{\rightarrow -}$$

$$\overrightarrow{- \rightarrow \times} + \overrightarrow{+ \rightarrow \div}$$
Given expression

$$54 \div 16 - 3 \times 6 + 2 = ?$$
After conversion

$$? = 54 - 16 \times 3 + 6 \div 2$$
or, $? = 54 - 48 + 3 = \boxed{9}$
62. (c)
$$\overrightarrow{T \Rightarrow \times} \underbrace{U \Rightarrow -}$$

$$\overrightarrow{V \Rightarrow \div} \underbrace{W \Rightarrow +}$$
(50 V 2) W (28 T 4)

$$\Rightarrow (50 \div 2) + (28 \times 4)$$

$$\Rightarrow 25 + 112 = 137$$
63. (d) $25 + 5 \div 2 = 40$

$$\Rightarrow (25 \times 2) - (5 \times 2) = 40$$

$$\Rightarrow 50 - 10 = 40$$

$$\Rightarrow 35 + 5 \div 2 = 60$$

$$\Rightarrow (35 \times 2) - (5 \times 2) = 60$$

$$\Rightarrow 70 - 10 = 60$$

$$45 + 5 \div 2$$

$$\Rightarrow (45 \times 2) - (5 \times 2)$$

$$\Rightarrow 90 - 10 = 80$$

- 64. (a) Black, Laterite and Alluvial represent different types of soils. Therefore, green (a colour) is different from the other three.
- 65. (b) Except Psychology, all others are related to medical science. Psychology is related with study of mind.
- 66. (d) Except Come : Arrive, all other pairs have such words which are antonymous to each other. Come and Arrive are relative synonyms.
- 67. (b) The second number is three times the first number except in the case of option (b).
 - $81 \times 3 = 243$ $64 \times 3 = 192$
 - $25 \times 3 = 75$

But, $16 \times 4 = 64$

Now, she was going towards North-East.

69. (b) During the time of sunset, walking towards the opposite side of sun means, Shama was walking towards east. বর্ষ - ৮, ইস্যু - ১২ ★ মার্চ, ২০২১

Γ

 ${{ \sqsubseteq}}$

84. (c) There are only one 'A' and one 'G' in the given word. Therefore, the word GARBAGE cannot	92. (c) The sum of cross products of the numbers gives the central number.
be formed.	First Figure $(4 \times 6) + (6 \times 7) = 24 + 42 = 66$
$H \ \overline{A R B I N G} E \ \overline{R} \Rightarrow BARRING$	$(4 \times 0) + (0 \times 7) = 24 + 42 = 00$ Second Figure
H A R B I N G E R ⇒ GARNER ആ⊮	$(8 \times 9) + (5 \times 14)$
	= 72 + 70 = 142
$H \underline{A R} B I \underline{N G E R} \Rightarrow RANGER$	Third Figure
85. (b) First Premise is Particular Affirmative (I-type)	$(11 \times 7) + (9 \times 6) = 77 + 54 = 131$
Second Premise is Universal Affirmative (A-	93. (c) First figure
type).	$9 \times 9 = 81$
Some shoes are white.	$81 \times 9 = 729$
	Second figure $8 \times 8 = 64$
All white are blue.	$64 \times 8 = 512$
$I + A \Rightarrow I$ -type of Conclusion "Some shoes are blue."	Third figure
This is Conclusion II.	$7 \times 7 = 49$
86. (c) First Premise is Universal Affirmative (A-type).	49 × 7 = 343 فی الحقاق
Second Premise is Universal Negative (E-type).	
All frogs are tortoises.	94. (b) First Figure $25 + 17 = 6 \times 7 = 42 = 42$
	Second Figure $7 = 42 = 42$
No tortoise is a crocodile.	$38 + 18 = 8 \times 7 = 56 = 56$
$A + E \Rightarrow E$ -type of Conclusion	Third Figure
"No frog is a crocodile".	89 + 16 = 105
This is Conclusion II.	105
Conclusion I is Converse of this Conclusion.	$\Rightarrow \frac{105}{7} = 15$
87. (b) First Premise is Particular Affirmative (I-type).	95. (c) First Figure
Second Premise is Universal Negative (E-type).	$(20 - 9)^2 = 121$
Some skirts are benches.	$\Rightarrow (11)^2 = 121$
No bench is a table.	Second Figure
$I + E \Rightarrow O$ -type of Conclusion	$(24 - 11)^2 = 169$
"Some skirts are not tables."	$\Rightarrow (13)^2 = 169$
Conclusion II is Converse of the first Premise.	Third Figure
88. (c) Rank of Neha from the last	$(32 - 17)^2$
= 45 - 15 + 1 + 31st	$\Rightarrow (15)^2 = 225$
89. (d) Total number of students in the line	96. (a) The sequential order of colours in Rainbow
= 17 + 22 - 1 = 38	is Violet, Indigo, Blue, Green, Yellow, Orange and Red.
90. (c) According to question,	c. Violet
I II III IV V	\downarrow
	b Green
BČĚĂĎ	\downarrow
	d. Yellow গ্র্যাচিডার্ম
The gap of two readers	↓
Therefore, D read the newspaper in the last.	e. Orange
91. (c) In each figure the lower left number is the	↓
square of the upper right number.	a. Red
Again, First figure $3 + 9 = 7 + 5$	97. (c) Chronological order of Presidents of India :
Second figure $2 + 8 = 4 + 6$ Third figure $4 + 7 = 5 + 2$	b. Rajendra Prasad (1950–1962)
Third figure $4 + 7 = 5 + ?$ $\Rightarrow ? = 11 - 5 = 6$	↓ a. S Radhakrishnan (1962–1967)
\rightarrow : - II - J - 0	a. 5 Kauliakiisiiidii (1902–1907)

٦

2

 \downarrow d. V V Giri (1969-1974) c. Giani Zail Singh (1982-1987) L e. APJ Abdul Kalam (2002-2007) 98. (c) Meaningful order of words in ascending order : d. Infant দ্যা গুৰায়ে \downarrow Child a. \downarrow e. Education \downarrow

b. Profession \downarrow

c. Marriage

99. (c) The numbers 3, 4, 5 and 6 are on the faces adjacent to the number 1. So, 2 lies opposite 1.

100.(d) The numbers 1, 2, 5 and 6 are on the faces adjacent to the number 3. Therefore, 4 lies opposite 3. The numbers 2, 3, 4 and 5 are on the faces adjacent to the number 1. Therefore, 6 lies opposite 1.

Γ

L