WBCS (Main) Exam Paper - VI Practice Set

Answers with Explanation

1. (b) Here, first divisor (729) is a multiple of second divisor (27).
\therefore Required remainder $=$ Remainder got on dividing 56 by $27=2$.
2. (b) Let the value of estate be ₹ x According to the question
$\frac{4}{5}$ of $x=16800$
$\therefore \mathrm{x}=\frac{16800 \times 5}{4}=₹ 21000$
खापिির্জ
$\therefore \frac{3}{7}$ of the value $=21000 \times \frac{3}{7}$
$=3000 \times 3=₹ 9000$
3. (c) The original property with Ram $=₹ x$ (let)
\therefore Wife's share $=₹ \frac{\mathrm{X}}{3}$
Remaining property $=x-\frac{x}{3}=₹ \frac{2 x}{3}$
Daughter's share $=\frac{2 x}{3} \times \frac{3}{5}=₹ \frac{2 x}{5}$
Son's share $=\frac{2 x}{3}-\frac{2 x}{5}=\frac{10 x-6 x}{15}=₹ \frac{4 x}{15}$
$\therefore \frac{4 \mathrm{x}}{15}=6400$
$\Rightarrow 4 \mathrm{x}=6400 \times 15$
खुप্ভির্র
$\Rightarrow \mathrm{x}=\frac{6400 \times 15}{4}=₹ 24000$
4. (b) Let LCM be L and HCF be H, then
$\mathrm{L}=4 \mathrm{H}$
$\therefore \mathrm{H}+4 \mathrm{H}=125$
$\Rightarrow 5 \mathrm{H}=125$
$\Rightarrow \mathrm{H}=\frac{125}{5}=25$
$\therefore \mathrm{L}=4 \times 25=100$
\therefore Second number
$=\frac{\mathrm{L} \times \mathrm{H}}{\text { First number }}$
खाप्डिर्स
$=\frac{100 \times 25}{100}=25$
5. (b) LCM of 4, 6, 8, 9

2	$4,6,8,9$
2	$2,3,4,9$
3	$1,3,2,9$
	$1,1,2,3$

Mাভিভর্শ
$\therefore \mathrm{LCM}=2 \times 2 \times 3 \times 2 \times 3=72$
\therefore Required number $=72$, because it is exactly divisible by $4,6,8$ and 9 and it leaves remainder 7 when divided by 13 .
6. (d) $1 \frac{1}{2}$ hours $=90$ minutes

1 hour and 45 minutes $=105$ minutes
1 hour $=60$ minutes
\therefore LCM of 30 minutes, 60 minutes, 90 minutes and 105 minutes

3	$30,60,90,105$		
5	10,20,	30,	35
2	2,	4,	6,
	1,	2,	3,

$\therefore \mathrm{LCM}=3 \times 5 \times 2 \times 2 \times 3 \times 7$ फुप्िषर्न
$=1260$ minutes
1260 minutes $=\frac{1260}{60}=21$ hours
\therefore The bell will again ring simultaneously after
21 hours.
\therefore Time will be
$=12$ noon +21 hours $=9$ a.m.
7. (a) Expression
$=4-\frac{5}{1+\frac{1}{3+\frac{1}{\frac{8+1}{4}}}}$
$=4-\frac{5}{1+\frac{1}{3+\frac{4}{9}}}=4-\frac{5}{1+\frac{1}{\frac{27+4}{9}}}$
$=4-\frac{5}{1+\frac{9}{31}}=4-\frac{5}{\frac{31+9}{31}}$
$=4-\frac{5 \times 31}{40}=\frac{160-155}{40}$
आ Mেভির্র
$=\frac{5}{40}=\frac{1}{8}$

8．（a）$?=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\right) \div\left(\frac{2}{5}-\frac{5}{9}+\frac{3}{5}-\frac{7}{18}\right)$
$=\left(\frac{30-15+12-10}{60}\right) \div\left(\frac{36-50+54-35}{90}\right)$
$=\left(\frac{17}{60}\right) \div\left(\frac{5}{90}\right)=\frac{17}{60} \times 18=\frac{51}{10}=5 \frac{1}{10}$
9．（a）Using（x）of Basic Formula
Let $0.9=\mathrm{x}, 0.2=\mathrm{y}$ and $0.3=\mathrm{z}$
Then，the given expression
$=\frac{x \times x \times x+y \times y \times y+z \times z \times z-3 \times x \times y \times z}{x \times x+y \times y+z \times z-x \times y-y \times z-z \times x}$
$=\frac{x^{3}+y^{3}+z^{3}-3 x y z}{x^{2}+y^{2}+z^{2}-x y-y z-z x}$
ख्याजिएর্स
$=\frac{(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)}{x^{2}+y^{2}+z^{2}-x y-y z-z x}$
$=\mathrm{x}+\mathrm{y}+\mathrm{z}$
$=0.9+0.2+0.3=1.4$
10．（d）Number of boys in the class $=x$（let）
\therefore Number of girls $=50-\mathrm{x}$
According to the question，
$\mathrm{x} \times 70+(50-\mathrm{x}) \times 75=50 \times 72$
$\Rightarrow 70 \mathrm{x}+3750-75 \mathrm{x}=3600$
$\Rightarrow 3750-5 \mathrm{x}=3600$
$\Rightarrow 5 \mathrm{x}=3750-3600=150$
$\Rightarrow \mathrm{x}=\frac{150}{5}=30$
11．（b）Sum of new numbers
$=\mathrm{na}+(2+4+8+16$ ．．to n terms）
Now，$S=2+4+8+16+\ldots .$. to n terms Here， $\mathrm{a}=$ first term $=2$
$r=$ common ratio $=\frac{4}{2}=2$
It is a geometric series．
$\therefore \mathrm{S}=\frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{\mathrm{r}-1}=\frac{2\left(2^{\mathrm{n}}-1\right)}{2-1}$
$=2\left(2^{n}-1\right)$
\therefore Required average
$=\frac{n a+2\left(2^{n}-1\right)}{n}$
$=\mathrm{a}+\frac{2\left(2^{\mathrm{n}}-1\right)}{\mathrm{n}}$
12．（c）Average of first five odd multiples of 3

$$
=\frac{3(1+3+5+7+9)}{5}=\frac{3 \times 25}{5}=15
$$

13．（a）$\frac{\mathrm{W}_{1}}{\mathrm{~W}_{2}}=\frac{2}{3}$
$\Rightarrow \frac{\mathrm{W}_{2}}{\mathrm{~W}_{1}}=\frac{3}{2}$ and $\frac{\mathrm{W}_{1}}{\mathrm{~W}_{3}}=\frac{1}{2}$
फ्याভि氏র্स
$\therefore \frac{\mathrm{W}_{2}}{\mathrm{~W}_{1}} \times \frac{\mathrm{W}_{1}}{\mathrm{~W}_{3}}=\frac{\mathrm{W}_{2}}{\mathrm{~W}_{3}}=\frac{3}{2} \times \frac{1}{2}=\frac{3}{4}=3: 4$
14．（d）According to the question，
$\mathrm{A} \times \frac{2}{3}=\mathrm{B} \times \frac{75}{100}=\mathrm{C} \times \frac{6}{10}$
$\Rightarrow \mathrm{A} \times \frac{2}{3}=\mathrm{B} \times \frac{3}{4}=\mathrm{C} \times \frac{3}{5}$
Now，$A \times \frac{2}{3}=B \times \frac{3}{4}$
$\Rightarrow \frac{\mathrm{A}}{\mathrm{B}}=\frac{3}{4} \times \frac{3}{2}=\frac{9}{8} \Rightarrow \mathrm{~A}: \mathrm{B}=9: 8$
and $\mathrm{B} \times \frac{3}{4}=\mathrm{C} \times \frac{3}{5}$
$\Rightarrow \frac{\mathrm{B}}{\mathrm{C}}=\frac{3}{5} \times \frac{4}{3}=\frac{4}{5}=\frac{8}{10}$
$=\mathrm{B}: \mathrm{C}=8: 10$
$\therefore \mathrm{A}: \mathrm{B}: \mathrm{C}=9: 8: 10$
15．（c）Let the present age of brothers be x and $2 x$ years．
Then， 5 years ago，
खुप्रिিर्य
$\frac{x-5}{2 x-5}=\frac{1}{3}$
$\Rightarrow 3 \mathrm{x}-15=2 \mathrm{x}-5$
$\Rightarrow x=15-5=10$
\therefore Age of elder brother $=10 \times 2=20$
\therefore Required ratio
$=\frac{10+5}{20+5}=\frac{15}{25}=3: 5$
16．（c） $1 \%=\frac{1}{100}$
$\therefore \frac{1}{100} \times \frac{1}{2}=\frac{1}{200}=0.005$
17．（d）Required number
$=\frac{240 \times 25}{100}-\frac{160 \times 15}{100}$
फ़ाশি氏ির্ज
$=60-24=36$
18．（d）Let income be ₹ 100
\therefore Sum given to elder son
$=20 \%$ of $₹ 100=₹ 20$

Remaining Sum $=₹ 80$
Sum given to younger son
$=30 \%$ of $₹ 80=₹ 24$
Remaining sum $=₹(80-24)=₹ 56$
Sum given to the trust
फुप्िए स्य
$=10 \%$ of ₹56 = ₹ 5.6
\therefore Remaining sum $=₹(56-5.6)=₹ 50.4$
\therefore When ₹ 50.4 remains, total income $=₹ 100$
\therefore When ₹ 10080 remains, total income
$=\frac{100 \times 10080}{50.4}=₹ 20000$
19. (b) C.P of article
$=\frac{100}{100-20} \times 450$
$=\frac{100 \times 450}{80}=₹ 562.5$
\therefore To gain 20%
S.P. $=\frac{562.5 \times 120}{100}=₹ 675$

खुাপ্িির্স
20. (c) Gain per cent $=\frac{400-320}{320} \times 100$
$=\frac{80}{320} \times 100=25 \%$
21. (c) S.P. of 7 pens $=\frac{10 \times 140}{100}=₹ 14$
\therefore S.P. of 1 pen $=\frac{14}{7}=₹ 2$
Clearly, 5 pens were sold for ₹ 10
22. (c) Single equivalent discount
$=\left(15+10-\frac{15 \times 10}{100}\right)=23.5 \%$
\therefore Cost price $=\frac{800 \times 76.5}{100}=₹ 612$
Actual C.P. $=₹(612+28)=₹ 640$
\therefore Gain $\%=\frac{800-640}{640} \times 100$
$=\frac{160 \times 100}{640}=25 \%$
खुप्डिিर्य
23. (c) C.P. for $\mathrm{A}=3000 \times \frac{90}{100} \times \frac{85}{100}=₹ 2295$

Actual C.P. $=2295+105=₹ 2400$
\therefore Gain per cent $=\frac{800}{2400} \times 100=\frac{100}{3}=33 \frac{1}{3} \%$
24. (a) Price of article $=$ Rs. x (let) According to the question,
$P=\frac{x(100-20)}{100} \times \frac{100-25}{100}$

$\Rightarrow \mathrm{P}=\mathrm{x} \times \frac{80}{100} \times \frac{75}{100}$
$\Rightarrow P=x \times \frac{4}{5} \times \frac{3}{4}=\frac{3 x}{5}$
$\Rightarrow \mathrm{x}=₹ \frac{5}{3} \mathrm{P}$
25. (a) Equal instalment
$=\frac{6450 \times 200}{4[200+(4-1) \times 5]}$
$=\frac{6450 \times 200}{4(215)}$
$=\frac{6450 \times 50}{215}=₹ 1500$
26. (c) Annual interest $=365 \times 2=₹ 730$

Principal $=\frac{\text { S.I } \times 100}{\text { Time } \times \text { Rate }}$
ख्याগ্ভির্ম
$=\frac{730 \times 100}{1 \times 5}=₹ 14600$
27. (c) Case I,

Interest $=$ Principal
Rate $=\frac{\text { Interest } \times 100}{\text { Principal } \times \text { Time }}$
$=\frac{100}{7} \%$ per annum
Case II,
Interest $=3 \times$ Principal
Time $=\frac{\text { Interest } \times 100}{\text { Principal } \times \text { Time }}$
$=\frac{3 \times 100}{\frac{100}{7}}=3 \times 7=21$ years
28. (c) $\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{T}}$

फुाডिির্জ
$\Rightarrow 30000+4347$
$=30000\left(1+\frac{7}{100}\right)^{\mathrm{T}}$
$\Rightarrow \frac{34347}{30000}=\left(\frac{107}{100}\right)^{\mathrm{T}}$
$\Rightarrow \frac{11449}{10000}=\left(\frac{107}{100}\right)^{2}=\left(\frac{107}{100}\right)^{\mathrm{T}}$
\Rightarrow Time $=2$ years
29. (d) Rate $=10 \%$ Per annum $=5 \%$ per half year

Time $=\mathrm{T}$ years $=2 \mathrm{~T}$ half years
$\therefore \mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{T}}$
$\Rightarrow 926.10=800\left(1+\frac{5}{100}\right)^{2 \mathrm{~T}}$
$\Rightarrow \frac{9261}{8000}=\left(\frac{21}{20}\right)^{2 \mathrm{~T}}$
$\Rightarrow\left(\frac{21}{20}\right)^{3}=\left(\frac{21}{20}\right)^{2 \mathrm{~T}}$
$\Rightarrow 2 \mathrm{~T}=3 \Rightarrow \mathrm{~T}=\frac{3}{2}$ years
Mাভ্ভির্ৰ
30. (d) Let S.I. $=₹ 100$, \& Principal $=₹ 100$
\therefore Rate $=\frac{\text { S.I. } \times 100}{\text { Principal } \times \text { Time }}$
$=\frac{100 \times 100}{100 \times 8}=\frac{25}{2} \%$
\therefore C.I. $=\mathrm{P}\left[\left(1+\frac{\mathrm{r}}{100}\right)^{\mathrm{T}}-1\right]$
$=8000\left[\left(1+\frac{25}{200}\right)^{2}-1\right]$
$=8000\left(\frac{81}{64}-1\right)=\frac{8000 \times 17}{64}=₹ 2125$
31. (b) (x and y)'s 1 hour work
$=\frac{1}{4}+\frac{1}{8}=\frac{2+1}{8}=\frac{3}{8}$
फাভিভির্জ
\therefore Required time $=\frac{8}{3}$ hours
$=\left(\frac{8}{3} \times 60\right)$ minutes $=160$ minutes.
32. (b) Work done by $(A+B)$ in 5 days
$=5\left(\frac{1}{12}+\frac{1}{20}\right)=5\left(\frac{5+3}{60}\right)=\frac{40}{60}=\frac{2}{3}$
Remaining work $=1-\frac{2}{3}=\frac{1}{3}$
سাড্ভির্স
\because Time taken by C in doing $\frac{1}{3}$ work
$=3$ days
\therefore Required time $=3 \times 3=9$ days
33. (c) Work done by $(\mathrm{A}+\mathrm{B})$ in 1 day
$=\frac{1}{15}+\frac{1}{10}=\frac{2+3}{30}=\frac{5}{30}=\frac{1}{6}$
$\therefore(\mathrm{A}+\mathrm{B})$'s 2 days' work $=\frac{2}{6}=\frac{1}{3}$
Remaining work $=1-\frac{1}{3}=\frac{2}{3}$
勺ुাড্ভির্ম
This part is done by A alone.
\because one work is done by A in 15 days.
$\therefore \frac{2}{3}$ work is done in $15 \times \frac{2}{3}=10$ days.
\therefore Total number of days $=10+2=12$ days
34. (d) Part of cistern filled by three pipes in an hour
$=\frac{1}{3}+\frac{1}{5}-\frac{1}{2}=\frac{10+6-15}{30}=\frac{1}{30}$
Hence, the cistern will be filled in 30 hours.
35. (c) Part of the tank filled in first two minutes
$=\frac{1}{20}-\frac{1}{30}=\frac{3-2}{60}=\frac{1}{60}$
\therefore Part of tank fillled in 114 minutes
$=\frac{57}{60}=\frac{19}{20}$
\therefore Remaining part of cistern will be filled in 115th minute
36. (b) Part of the tank filled by $(\mathrm{A}+\mathrm{B}+\mathrm{C})$ in 1 hour $=\frac{1}{6}$
Part of tank filled by these in 2 hours
$=\frac{2}{6}=\frac{1}{3}$
Remaining part $=1-\frac{1}{3}=\frac{2}{3}$

Time taken by A and B in filling $\frac{2}{3}$ rd part
$=8$ hours
\therefore Time taken by A and B in filling the whole tank $=\frac{8 \times 3}{2}=12$ hours
\therefore Part of tank filled by C in an hour
$=\frac{1}{6}-\frac{1}{12}=\frac{1}{12}$
फ्रापिएय
Hence, required time $=12$ hours
37. (a) Time $=10 \frac{1}{2}$ hours $=\frac{21}{2}$ hours

Speed $=40 \mathrm{kmph}$
Distance $=$ Speed \times Time
$=40 \times \frac{21}{2}=420 \mathrm{~km}$
38. (d) $\because 1 \mathrm{~m} / \mathrm{sec}=\frac{18}{5} \mathrm{kmph}$

फुाগिির্জ
$\therefore \frac{10}{3} \mathrm{~m} / \mathrm{sec}$
$=\frac{18}{5} \times \frac{10}{3}=12 \mathrm{kmph}$
39. (b) When a train crosses a railway platform, it travels a distance equal to sum of length of platform and its own length.
Speed $=132 \mathrm{kmph}$
$=132 \times \frac{5}{18}=\frac{110}{3} \mathrm{~m} / \mathrm{sec}$.
\therefore Required time $=\frac{110+165}{\frac{110}{3}}$ seconds
$=\frac{275 \times 3}{110}=7.5$ seconds
40. (a) Speed in still water $=x \mathrm{~km} / \mathrm{h}$

Speed of current $=y \mathrm{~km} / \mathrm{h}$
$\therefore x+y=\frac{\frac{1}{\frac{4}{60}}}{}=15$

$$
x-y=\frac{1}{\frac{10}{60}}=6
$$

\therefore Speed of current
$=\frac{1}{2}[(x+y)-(x-y)]$
$=\frac{1}{2}(15-6)=\frac{9}{2}=4.5 \mathrm{~km} / \mathrm{h}$
फ्राजिির্ज
41. (d) Speed of boat in still water $=x$ kmph (let)

Speed of current $=y \mathrm{kmph}$
Rate downstream $=(x+y) \mathrm{kmph}$
Rate upstream $=(\mathrm{x}-\mathrm{y}) \mathrm{kmph}$
Distance $=$ Speed \times Time
$\therefore(\mathrm{x}-\mathrm{y}) \times 2 \mathrm{t}=(\mathrm{x}+\mathrm{y}) \times \mathrm{t}$
$\Rightarrow 2 \mathrm{x}-2 \mathrm{y}=\mathrm{x}+\mathrm{y}$
$\Rightarrow 2 \mathrm{x}-\mathrm{x}=2 \mathrm{y}+\mathrm{y} \Rightarrow \mathrm{x}=3 \mathrm{y}$
$\Rightarrow \frac{\mathrm{x}}{\mathrm{y}}=\frac{3}{1}=3: 1$
42. (d) Let $\mathrm{PQ}=\mathrm{QR}=\mathrm{z} \mathrm{km}$.

Let speed of boat in still water be x kmph. and speed of current be $y \mathrm{kmph}$.
According to the question,
क্রাপ্ভির্স
$\frac{z}{x+y}+\frac{z}{x-y}=12$
and $\frac{2 z}{x-y}=16 \frac{40}{60}$
$\Rightarrow \frac{2 \mathrm{z}}{\mathrm{x}-\mathrm{y}}=16 \frac{2}{3}=\frac{50}{3}$
By equation (i) $\times 2-$ (ii),
$\frac{2 z}{x+y}+\frac{2 z}{x-y}-\frac{2 z}{x-y}=24-\frac{50}{3}$
$\Rightarrow \frac{2 \mathrm{z}}{\mathrm{x}+\mathrm{y}}=\frac{72-50}{3}$
$=\frac{22}{3}=7 \frac{1}{3}$ hours
43. (c)

$3^{2}+4^{2}=5^{2}$
$\Delta \mathrm{ABC}$ is a right angled triangle.
\therefore area $\mathrm{ABC}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{BC}$
$=\frac{1}{2} \times 3 \times 4=6 \mathrm{~cm}^{2}$
\therefore Required Area of $\triangle \mathrm{DEF}$

$=\frac{1}{4} \times 6=\frac{3}{2} \mathrm{~cm}^{2}$
44. (b)

$x^{2}+x^{2}=(5)^{2} \Rightarrow 2 x^{2}=25$
$\Rightarrow \mathrm{x}^{2}=\frac{25}{2} \Rightarrow \mathrm{x}=\frac{5}{\sqrt{2}}$
Area $=\frac{1}{2} \times \frac{5}{\sqrt{2}} \times \frac{5}{\sqrt{2}}$
$=\frac{25}{4}=6.25$ sq. cm .
45. (c)

$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}$
$\Rightarrow \frac{360}{250}=\frac{8 \times 8}{\mathrm{DE}^{2}}$
$\Rightarrow \mathrm{DE}^{2}=\frac{8 \times 8 \times 250}{360}=\frac{8^{2} \times 5^{2}}{6^{2}}$
$\Rightarrow \mathrm{DE} \frac{8 \times 5}{6}=\frac{20}{3}=6 \frac{2}{3} \mathrm{~cm}$
क्याष्टिर्न
46. (d) Area of equilateral triangle $=\frac{\sqrt{3}}{4} \times(\text { side })^{2}$
$\Rightarrow \frac{\sqrt{3}}{4} \times(\text { side })^{2}=48$
$(\text { side })^{2}=\frac{48 \times 4}{\sqrt{3}}$
$=\frac{16 \times \sqrt{3} \times \sqrt{3} \times 4}{\sqrt{3}}=64 \sqrt{3}$
\therefore Side $=\sqrt{64 \sqrt{3}}=8 \sqrt[4]{3} \mathrm{~cm}$
47. (c)

फ्या sिएय

If $\mathrm{AB}=\mathrm{xcm}$, then
$\mathrm{BD}=\frac{\mathrm{x}}{2} \mathrm{~cm}$
\therefore From $\triangle \mathrm{ABD}$
$\mathrm{AB}^{2}=\mathrm{BD}^{2}+\mathrm{AD}^{2}$
$\Rightarrow \mathrm{x}^{2}=\frac{\mathrm{x}^{2}}{4}+(6 \sqrt{3})^{2}$
$\Rightarrow \mathrm{x}^{2}=\frac{\mathrm{x}^{2}}{4}=36 \times 3$
$\Rightarrow \frac{3 \mathrm{x}^{2}}{4}=36 \times 3$
$\Rightarrow \mathrm{x} 2=36 \times 4$
$\Rightarrow \mathrm{x}=6 \times 2=12 \mathrm{~cm}$
\therefore Perimeter of equilateral triangle
$=3 \times 12=36 \mathrm{~cm}$
48. (a)

$\mathrm{AC}=24 \mathrm{~cm}=\mathrm{d}_{2}$
$B D=32 \mathrm{~cm}=\mathrm{d}_{1}$
$\therefore \mathrm{OD}=16 \mathrm{~cm}$
$\mathrm{OC}=12 \mathrm{~cm}$
$\angle \mathrm{COD}=90^{\circ}$
$\therefore \mathrm{CD}=\sqrt{\mathrm{OC}^{2}+\mathrm{OD}^{2}}$
$=\sqrt{12^{2}+16^{2}}$
$=\sqrt{144+256}=\sqrt{400}=20 \mathrm{~cm}$
শাডিভির্ম
\therefore Perimeter of rhombus
$=4 \times \mathrm{CD}=4 \times 20=80 \mathrm{~cm}$
49. (b) Let the radii of two cylinders are r_{1}, r_{2} and length of the cylinders are h_{1}, h_{2} respectively. According to the question
$\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{2}{3}$ and $\frac{\mathrm{h}_{1}}{\mathrm{~h}_{2}}=\frac{5}{3}$
\therefore Ratio of their volume
$=\pi r_{1}^{2} h_{1}: \pi r_{2}^{2} h_{2}$
শ্ডাণ্ভির্স
$=\mathrm{r}_{1}^{2} \mathrm{~h}_{1}: \mathrm{r}_{2}^{2} \mathrm{~h}_{2}$
$=(2)^{2} \times 5:(3)^{2} \times 3$
$=4 \times 5: 9 \times 3=20: 27$
50. (b) Let $0.41=\mathrm{x}$ and $0.69=\mathrm{y}$
\therefore Expression $=\frac{\left(\mathrm{x}^{3}+\mathrm{y}^{3}\right)}{\left(\mathrm{x}^{2}-\mathrm{xy}+\mathrm{y}^{2}\right)}$
$=\frac{(x+y)\left(x^{2}-x y+y^{2}\right)}{\left(x^{2}-x y+y^{2}\right)}$
$=x+y=0.41+0.69=1.10$
फ্যাচ্ভির্স
51. (a) The water in river flows. The water in pool remains stagnant.
52. (c) January is the first month of a year and November is the second last month of a year. Similarly, Sunday is the first day of a week and Friday is the second last day of a week.
53. (a) The pair of synonyms is given.
54. (b) Yesterday \rightarrow Today \rightarrow Tommorrow March \rightarrow April \rightarrow May
55. (b) $\sqrt{169}=13$

Therefore,
$\sqrt{289}=17$
56. (a) $(5)^{3}-1=124$

Similarly, $(7)^{3}-1=342$
57. (a) $371-150=221$
$468-221=247$
58. (c)

C's father is A but C is not son of A. Hence, C is daughter of A .
59. (d)

Obviously P and M are parents (father and mother respectively) of T. Hence P and M are husband-wife. Hence P is son-in-law of M's mother/father ' K '.
60. (c) Grandson of Arun's mother means either son or nephew of Arun. Therefore, Arun is the father-in-law of that girl.
61. (a)

$\times \rightarrow+$	$\div \rightarrow-$
$-\rightarrow \times$	$+\rightarrow \div$

Given expression
$54 \div 16-3 \times 6+2=$?
After conversion
? $=54-16 \times 3+6 \div 2$
or, ? $=54-48+3=9$
62. (c)

$\mathrm{T} \Rightarrow \times$	$\mathrm{U} \Rightarrow-$
$\mathrm{V} \Rightarrow \div$	$\mathrm{W} \Rightarrow+$

(50 V 2) W (28 T 4)
$\Rightarrow(50 \div 2)+(28 \times 4)$
$\Rightarrow 25+112=137$
63. (d) $25+5 \div 2=40$
$\Rightarrow(25 \times 2)-(5 \times 2)=40$
$\Rightarrow 50-10=40$
$\Rightarrow 35+5 \div 2=60$
$\Rightarrow(35 \times 2)-(5 \times 2)=60$
$\Rightarrow 70-10=60$
ख्याप्षिस

$$
45+5 \div 2
$$

$\Rightarrow(45 \times 2)-(5 \times 2)$
$\Rightarrow 90-10=80$
64. (a) Black, Laterite and Alluvial represent different types of soils. Therefore, green (a colour) is different from the other three.
65. (b) Except Psychology, all others are related to medical science. Psychology is related with study of mind.
66. (d) Except Come : Arrive, all other pairs have such words which are antonymous to each other. Come and Arrive are relative synonyms.
67. (b) The second number is three times the first number except in the case of option (b).
$81 \times 3=243$
$64 \times 3=192$
$25 \times 3=75$
But, $16 \times 4=64$
68. (d)

खुাঙ্ডির্জ

Now, she was going towards North-East.
69. (b) During the time of sunset, walking towards the opposite side of sun means, Shama was walking towards east.

Now, Sham is facing west.
70. (c)

Required distance $=10+5=15 \mathrm{~km}$.
71. (d)

$\mathrm{AE}=\sqrt{(\mathrm{AD})^{2}+(\mathrm{DE})^{2}}=\sqrt{(3)^{2}+(4)^{2}}$
$=\sqrt{9+16}=\sqrt{25}=5 \mathrm{~km}$
ख্যাপ্ভির্স
72. (c) Last Monday was December 29, 1975.
\rightarrow December 30,1975
Wednesday \rightarrow December 31, 1975
Thursday \rightarrow January 1, 1976
Friday \rightarrow January 2, 1976
73. (c) Mondays $\Rightarrow 8,15,22$ and 29

Therefore, 30th \Rightarrow Tuesday
74. (c) Time at present
$=4: 45+0: 50=5: 35$
$6: 00-5: 35=0: 25=25$ minutes
75. (c) The given number series is based on the following pattern :
$98-(13 \times 2)=72$
$72-(11 \times 2)=50$
$50-(9 \times 2)=32$
$32-(7 \times 2)=18$
$18-(5 \times 2)=8$
76. (b)

77. (c) Each term consists of two numbers. Each number of one term is based on particular rule.

फ्रापिएय

78. (d)

79. (d)

खुप्वियन
80. (a)

81. (b) $\mathrm{E}=5$ i.e. Position Number in the English alphabet.
$\begin{array}{lll}\mathrm{H} & \mathrm{E} & \mathrm{N} \\ \downarrow & \downarrow & \downarrow \\ 8 & + & 5\end{array}$
Therefore,

82. (d) There is no ' C ' letter in the given word. Therefore, the word PORTICO cannot be formed.

PO RT F OLIO $\mathrm{I} \Rightarrow$ RIFT
$\mathrm{P} O \mathrm{OR} \mathrm{FO} \mathrm{LIO} \Rightarrow \mathrm{ROOF}$
कुप्षिणर्य
PO RT FO LI O \Rightarrow FORT
83. (d) There is no ' G ' letter in the given word. Therefore, the word CHANGE cannot be formed.

ME R C H AN DI S E MESH
MAR CHAN DIS \Rightarrow DICE
ME R CH A N I S E \Rightarrow CHARM
84. (c) There are only one ' A ' and one ' G ' in the given word. Therefore, the word GARBAGE cannot be formed.

H A R B IN G E R \Rightarrow BARRING
H A R B I N G ER \Rightarrow GARNER
खुप्डियन्त
H A R B I N GER \Rightarrow RANGER
85. (b) First Premise is Particular Affirmative (I-type) Second Premise is Universal Affirmative (Atype).
Some shoes are white.
All white are blue.
I + A \Rightarrow I-type of Conclusion
"Some shoes are blue."
This is Conclusion II.
86. (c) First Premise is Universal Affirmative (A-type). Second Premise is Universal Negative (E-type).
All frogs are tortoises.
No tortoise is a crocodile.
$\mathrm{A}+\mathrm{E} \Rightarrow$ E-type of Conclusion
"No frog is a crocodile".
This is Conclusion II.
खुप্िির্শ
Conclusion I is Converse of this Conclusion.
87. (b) First Premise is Particular Affirmative (I-type). Second Premise is Universal Negative (E-type).
Some skirts are benches.
No bench is a table.
$\mathrm{I}+\mathrm{E} \Rightarrow$ O-type of Conclusion
"Some skirts are not tables."
Conclusion II is Converse of the first Premise.
88. (c) Rank of Neha from the last
$=45-15+1+31 \mathrm{st}$
89. (d) Total number of students in the line
$=17+22-1=38$
90. (c) According to question,

आাড্ভির্स

Therefore, D read the newspaper in the last.
91. (c) In each figure the lower left number is the square of the upper right number.
Again, First figure $3+9=7+5$
Second figure $2+8=4+6$
Third figure $4+7=5+$?
\Rightarrow ? = $11-5=6$
92. (c) The sum of cross products of the numbers gives the central number.
First Figure
फ़ाগिির্स
$(4 \times 6)+(6 \times 7)=24+42=66$
Second Figure
$(8 \times 9)+(5 \times 14)$
$=72+70=142$
Third Figure
$(11 \times 7)+(9 \times 6)=77+54=131$
93. (c) First figure
$9 \times 9=81$
$81 \times 9=729$
Second figure
$8 \times 8=64$
$64 \times 8=512$
Third figure
$7 \times 7=49$
$49 \times 7=343$

94. (b) First Figure
$25+17=6 \times 7=42=42$
Second Figure
$38+18=8 \times 7=56=56$
Third Figure
$89+16=105$
$\Rightarrow \frac{105}{7}=15$
95. (c) First Figure
$(20-9)^{2}=121$
$\Rightarrow(11)^{2}=121$
Second Figure
$(24-11)^{2}=169$
$\Rightarrow(13)^{2}=169$
Third Figure
$(32-17)^{2}$
$\Rightarrow(15)^{2}=225$
96. (a) The sequential order of colours in Rainbow is Violet, Indigo, Blue, Green, Yellow,
Orange and Red.
c. Violet
\downarrow
b Green
\downarrow
d. Yellow
e. Orange
a. Red
97. (c) Chronological order of Presidents of India :
b. Rajendra Prasad (1950-1962)
a. S Radhakrishnan (1962-1967)
\downarrow
d. V V Giri (1969-1974)
\downarrow
c. Giani Zail Singh (1982-1987)
\downarrow
e. APJ Abdul Kalam (2002-2007)
98. (c) Meaningful order of words in ascending order :
d. Infant
\downarrow
धुाज्जिस
a. Child
e. Education \downarrow
b. Profession
\downarrow
c. Marriage
99. (c) The numbers $3,4,5$ and 6 are on the faces adjacent to the number 1 . So, 2 lies opposite 1.
100.(d) The numbers $1,2,5$ and 6 are on the faces adjacent to the number 3. Therefore, 4 lies opposite 3.
The numbers 2, 3, 4 and 5 are on the faces adjacent to the number 1 . Therefore, 6 lies opposite 1.

धुगजिएन
Now, the number 5 lies opposite 2 .

